Many plant-based products have been suggested as potential antidiabetic agents, but few have been shown to be effective in treating the symptoms of Type 2 diabetes mellitus (T2DM) in humans, and little is known of their mechanisms of action. Extracts of Gymnema sylvestre (GS) have been used for the treatment of T2DM in India for centuries. The effects of a novel high molecular weight GS extract, Om Santal Adivasi, (OSA®) on plasma insulin, C-peptide and glucose in a small cohort of patients with T2DM are reported here. Oral administration of OSA® (1 g/day, 60 days) induced significant increases in circulating insulin and C-peptide, which were associated with significant reductions in fasting and post-prandial blood glucose. In vitro measurements using isolated human islets of Langerhans demonstrated direct stimulatory effects of OSA® on insulin secretion from human β-cells, consistent with an in vivo mode of action through enhancing insulin secretion. These in vivo and in vitro observations suggest that OSA® may provide a potential alternative therapy for the hyperglycemia associated with T2DM. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: Gymnema sylvestre extract; Type 2 diabetes mellitus; human islets of Langerhans; insulin secretion.
Recently a high molecular weight GS extract was isolated (Chatterji, 2005a, 2005b) which was subsequently designated as the OmSantal Adhivi extract (OSA®) after the Santal tribe who first used GS leaves in Ayurvedic medicine. In a recent study it was demonstrated that OSA® stimulated insulin secretion from the mouse MIN6 β-cell line in vitro (Liu et al., 2009) without exerting the deleterious effects on β-cell viability and membrane integrity that are associated with crude GS extracts (Persaud et al., 1999). The present study investigated the effects of oral OSA® on plasma insulin, C-peptide and glucose in a small cohort of patients with T2DM, and determined whether OSA® acts by direct effects on human pancreatic β-cells.

MATERIALS AND METHODS

Materials. All reagents and chemicals were purchased from Sigma Chemical Co (Dorset, UK) unless otherwise stated. Na^125I for insulin iodination was from Perkin Elmer (Bucks, UK). Human islets were provided for this study, with appropriate ethical approval, by the Human Islet Isolation Unit at King’s College Hospital, London, UK. Islets were isolated from whole human pancreas by collagenase digestion as described previously (Huang et al., 2004). Briefly, pancreata were removed from non-diabetic heart beating organ donors with permission from donor relatives and approval from the Ethical Committee of King’s College Hospital. Islets were maintained in culture in Connaught Medical Research Laboratories (CMRL) medium supplemented with 10% FCS, 100 U/mL penicillin/0.1 mg/mL streptomycin and 2 mM glutamine at 37°C (95% O_2/5% CO_2).

Plant material and preparation. The GS extract used in this study (OSA®) was prepared by extracting fresh GS leaves by aqueous alcohol according to protocols described in the US Patents 6949261 and 6946151 (Chatterji, 2005a, 2005b). GS leaves were identified by a botanist, and a voucher specimen (reference GS1-OSA1-G123/C) was deposited with Ayurvedic-Life International LLC (Neenah, WI 54946-0010, USA). The OSA® extract used in this study was a gift from Ayurvedic Life International LLC, Wisconsin, USA. OSA® solutions were freshly prepared for in vitro experiments as a 200 mg/mL stock in water, and then diluted as appropriate using a physiological salt solution (Gey and Gey, 1936).

Patient cohort. Eleven patients (7 female, 4 male) were recruited and consented for an in vivo study of the effects of OSA® administration on blood glucose and insulin levels. The mean age of the cohort was 50.1 ± 3 years (female: 50.7 ± 4; male: 49 ± 5, p > 0.2) with a range of 36–70 years. The mean body weight at the outset of the trial was 58.7 ± 7.6 kg (female: 57.7 ± 3.0; male: 60.5 ± 2.8, p > 0.2) with a range of 45–70 kg. Patients were recruited, following local ethical approval, from Burdwan Medical College clinic, West Bengal, and were either newly diagnosed with T2DM, or had previously been treated with standard pharmacological regimens. Exclusion criteria were pregnancy, pre-existing heart disease, hypertension or respiratory disorders, and failure of compliance with the protocol.

Treatment and analysis. OSA® was administered orally in capsule form at a dose of 500 mg (2 × 250 mg capsules) two times each day before food intake for 60 days, giving a total daily dose of 1 g OSA®. Blood samples were taken at the start of the trial (day 0) and at the completion of the trial (day 60), and body weight was recorded at the start and completion of the trial. Blood glucose was estimated as described (Middleton and Griffiths, 1957) and insulin and C-peptide were measured in serum samples by radioimmunoassay (RIA), as described (Claudio and Lagua, 1995).

Insulin secretion from human islets of Langerhans. The effect of OSA® on insulin secretion from human islets in vitro was examined using a multi-channel, temperature-controlled perifusion system, essentially as described previously (Liu et al., 2009). The perifusion system consisted of 16 Swinnex chambers fitted with 1 μm nylon mesh filters. Islets within the chambers were perifused at a flow rate of 0.5 mL/min with a physiological buffer (Gey and Gey, 1936) supplemented with 2 mM CaCl_2, 2 mM glucose and 0.5 mg/mL BSA for 60 min to establish a stable basal rate of insulin secretion, after which perifusate samples were collected at 2 min intervals and stored at −20°C until assayed for insulin content by radioimmunoassay (Jones et al., 1988). Since glucose-induced insulin secretion is temperature-dependent, all perifusion experiments were carried out in a temperature-controlled room at 37°C.

Statistical analysis. Data are represented as mean ± SEM unless otherwise stated. Differences between treatment groups were assessed using analysis of variance (ANOVA) and Bonferroni’s t-test for multiple comparisons or Student’s paired t-test (two tailed), as appropriate. Differences between treatment groups were considered significant when p < 0.05.

RESULTS

Effects of OSA® administration in vivo

Daily oral administration of OSA® for 60 days produced significant improvements in glycemic control, as shown in Fig. 1. Thus, in 10/11 patients OSA® treatment was associated with a reduction in fasting blood glucose levels (Fig. 1A), with a mean reduction from 162 ± 23 to 119 ± 17 mg/dL (p < 0.005). Post-prandial blood glucose levels (Fig. 1B) also showed significant reductions in 10/11 patients, with a reduction from 291 ± 10 to 236 ± 30 mg/dL (p < 0.02). OSA® treatment had no significant effect on the extent of the post-prandial excursion in plasma glucose (day 0, 132 ± 10 mg/dL; day 60, 117 ± 26 mg/dL, p > 0.2), nor on body weight over the 60 day period of the trial (day 0, 58.7 ± 7.6 kg; day 60, 53.9 ± 7.3 kg, p > 0.2). One patient showed no reduction in either fasting or post-prandial blood glucose levels and no change in body weight during the treatment period. The improvements in glycemic control in response to OSA® treatment were associated with increased circulating levels of insulin and/or C-peptide in all patients, as shown in Fig. 2. Thus 60 days treatment with OSA® induced a mean increase in serum insulin (Fig. 2A) from 24 ± 9 to 32 ± 6 μU/mL (p < 0.001), with a corresponding

increase in serum C-peptide (Fig. 2B) from 298 ± 42 to 447 ± 48 pmol/L (p < 0.05).

Effect of OSA® on insulin secretion from isolated human islets

The effects of OSA® on the pattern and rate of insulin secretion, and the reversibility of its effects, were tested using human islets in vitro, as shown in Fig. 3. Perfusion of human islets with buffer supplemented with 0.125 mg/mL OSA® at a sub-stimulatory concentration (2 mM) of glucose evoked an approximately 2-fold increase in insulin secretion (217 ± 18% basal, p < 0.001, n = 4), as shown in Fig. 3A. The response to OSA® was rapid in onset, sustained for the duration of exposure to OSA®, and rapidly reversible upon its withdrawal. Subsequent exposure to 20 mM glucose following OSA® treatment induced a further increase in insulin secretion (Fig. 3A).

In addition to initiating an insulin secretory response, OSA® (0.125 mg/mL) potentiated glucose-induced insulin secretion, as shown in Fig. 3B. Thus, increasing the glucose concentration from 2 to 20 mM (10–30 min) resulted in the expected biphasic pattern of glucose-induced insulin secretion. The first phase was rapid and transient, reaching a peak within 4 min followed by a sustained second phase of insulin secretion of a lower magnitude. Exposure to OSA® (0.125 mg/mL) in the continued presence of 20 mM glucose (30–50 min) further potentiated the glucose-induced secretory response, with enhanced rates of insulin secretion being maintained for the duration of exposure to OSA®.
A NOVEL GYMNEMA SYLVESTRE EXTRACT STIMULATES INSULIN SECRETION

DISCUSSION

Crude extracts of GS leaves or low molecular weight isolates from GS extracts have been reported to reduce hyperglycemia without altering the insulin sensitivity of target tissues in animal models of diabetes (Gupta, 1961, 1963; Gupta and Vairiyar, 1961; Mhaskar and Caius, 1930; Okabayashi et al., 1990; Shanmugasundaram et al., 1983; Srivastava et al., 1985, 1986; Sugihara et al., 2000; Terasawa et al., 1994; Tominaga et al., 1995). We have previously reported the isolation of a high molecular weight GS extract of >3000 Da, as determined by molecular weight cut-off filtration (Chatterji, 2005a, 2005b), and we have recently demonstrated that this extract, designated OSA®, had a direct stimulatory effect on insulin-secreting β-cells (Liu et al., 2009) without inducing the cell damage associated with crude GS extracts in vitro (Persaud et al., 1999). To date, there have been relatively few reported studies of any GS extracts in humans (Baskaran et al., 1990; Khare et al., 1983; Shanmugasundaram et al., 1981, 1990), and no reported studies in humans using OSA® or other high molecular weight isolates. The present study therefore investigated whether this novel isolate from GS leaves had an effect on clinically relevant parameters such as insulin, C-peptide and glucose levels in a small cohort of patients with T2DM. In addition, isolated human islets of Langerhans were used to investigate whether OSA® had direct stimulatory effects on insulin secretion from islet β-cells.

The patients recruited to this study presented with both fasting and post-prandial hyperglycemia but with circulating insulin and C-peptide levels within the normal range. Oral treatment with OSA® for 60 days

Figure 2. Effect of daily oral administration of OSA® on plasma insulin and C-peptide levels of patients with Type 2 diabetes mellitus. Administration of OSA® (1000 mg/day) for 60 days significantly (p < 0.05) increased circulating levels of insulin (A) and C-peptide (B). Data show the plasma levels of insulin (μU/mL) and C-peptide (pmol/L) for each patient before and after treatment.
resulted in significant reductions in fasting and post-prandial plasma glucose levels to nearly normal values in 10 of 11 patients, although it is unclear why one member of the cohort did not respond to OSA® treatment. The effect of OSA® to decrease plasma glucose was not associated with changes in post-prandial glucose excursions nor in body weight, indicating that the effect of OSA® on glycemia was not secondary to a decrease in either glucose absorption or food intake, consistent with an effect via enhanced insulin secretion. In accordance with this, measurements of plasma insulin and C-peptide levels demonstrated that OSA®-induced improvements in glycemic control were accompanied by elevations in plasma insulin and C-peptide concentrations suggesting that OSA® has a direct stimulatory effect on β-cells in the islets of Langerhans.

To further test this hypothesis, the effects of OSA® on the rate and pattern of insulin secretion from isolated human islets were examined in vitro. Our demonstration that OSA® stimulated insulin secretion from isolated human islets is consistent with a direct effect on human β-cells of a component(s) of the high molecular weight GS extract, and offer a mode of action through which oral treatment with OSA® resulted in increases in circulating insulin and C-peptide levels, and thus reduced fasting and post-prandial blood glucose. In our in vitro experiments OSA® initiated insulin secretion at a sub-stimulatory concentration (2 mM) suggesting a nutrient- and metabolism-independent mechanism of action on human β-cells. This was further confirmed by our observations that OSA® also potentiated the maximum glucose-induced (20 mM) secretory...
responses, indicating that OSA® does not act as a nutrient itself, nor as an enhancer of glucose metabolism, but has an effect independent of nutrient metabolism. Extracts of GS leaves contain a mixture of saponin compounds (Murakami et al., 1996; Sinshimeier et al., 1970; Sinshimeier and Rao, 1970; Sugihara et al., 2000) and the presence of these compounds may be detrimental to membrane integrity and cell viability (Schulz, 1990), causing pathological and unregulated release of insulin from damaged β-cells (Persaud et al., 1990). There are a number of reasons why this is unlikely to account for the insulin-releasing properties of OSA®. Firstly, in the in vivo study the saponins in the OSA extract most likely would be degraded in the gastrointestinal tract and therefore lose their detergent properties and membrane-damaging effects. Secondly, the OSA® fraction prepared from GS extract by molecular weight cut-off filtration has a low saponin content, and does not damage β-cell membranes at the concentrations used in the present study (Liu et al., 2009). In accordance with this, our preliminary experiments demonstrated that at concentrations of ≤0.25 mg/mL, OSA® stimulated insulin secretion from islets and β-cells without compromising plasma membrane integrity as assessed by Trypan Blue exclusion test. Thirdly, insulin secretory responses induced by OSA® were sustained and readily reversible following its removal, consistent with the activation of a regulated secretory response. Finally, human islets which had been exposed to OSA® alone were capable of mounting a normal secretory response to glucose following OSA® treatment, confirming that OSA® treatment was not associated with β-cell damage because the cells were subsequently able to metabolize glucose and trigger membrane depolarization in response to glucose.

In summary, this is the first report showing that OSA®, a high molecular weight fraction isolated from GS leaf extract is effective in reducing blood glucose and increasing plasma insulin and C-peptide levels in humans. Our parallel in vitro studies suggest that at least some of these effects of OSA® can be attributed to a direct stimulatory effect on insulin secretion from β-cells in the islets of Langerhans. OSA® may therefore provide a potential alternative therapy for the hyperglycemia associated with T2DM.

Acknowledgements

A. Al-Romaiyan is supported by a scholarship from the Government of Kuwait. This work was supported by an unrestricted research grant from Ayurvedic-Life International LLC.

Duality of interest

The authors are not aware of any conflict of interest.

REFERENCES


